Code No: A5701

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M.Tech I Semester Examinations, October/November-2011 DIGITAL SYSTEM DESIGN (VLSI STSTEM DESIGN)

Time: 3hours Max. Marks: 60

Answer any five questions All questions carry equal marks

- - -

- 1.a) Draw an ASM chart to design a control logic of a binary multiplier.
 - b) Realize the above design using MUX, decoder and D-type flip flops. [12]
- 2.a) Draw the general structure of a CPLD and explain how a logic function can be realized on CPLD with simple example.
 - b) Design a four-way traffic light controller that will keep traffic moving efficiently along two busy streets that intersect. Implement the controller using PALs. [12]
- 3.a) Using the path-sensitization method and Boolean difference method find the test vectors for SA0 fault on input line 1 and SA1 fault on the internal line 2 of the circuit shown in figure 1.

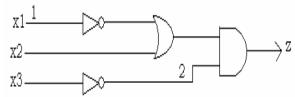


figure 1

- b) Explain how Kohavi algorithm is useful in the detection of faults in digital circuits. [12]
- 4.a) Apply D-algorithm to detect SA0 fault at point 'h' in the given circuit shown in figure 2 and derive the test vectors.

figure 2

- b) Apply signature analysis to the above circuit and generate the signatures using 4-bit LFSR with a feed back from 3rd flip flop. [12]
- 5.a) Distinguish between Mealy and Moore machines.
 - b) Convert the following Mealy machine into a corresponding Moore machine.

[12]

Machine 1

Ps	N	Ns, Z			
	X=0	X=1			
A	В,0	D,0			
В	A,0	B,0			
С	D,1	A,0			
D	D.1	C.0			

- 6.a) Apply PLA maximization procedure and obtain the minimized expression to be implemented on PLA. F = 2021+0022+1200
 - b) Obtain the minimum test vector set for the above function 'F' in question 6 (a).

[12]

- 7.a) Explain the different types of fault models and fault types in a PLA.
 - b) Plot the following PLA on the map. Identify the undetectable faults. Determine a minimal test set for detectable faults. [12]

\mathbf{x}_1	X ₂ X ₃ X ₄			Z_1	$Z_1 Z_2$		
0	2	2	1	1	0		
2	1	1	2	1	1		
0	1	2	1	0	1		

- 8.a) The output Z of a fundamental-mode, two input sequential circuit is to change from 0 to 1 only when 2x changes from 0 to 1 while 1x=1. The output is to change from 1 to 0 only when 1x changes from 1 to 0 while 2x=1.
 - (i) Find a minimum-row reduced flow table, the output should be fast and flicker-free.
 - (ii) Show a valid assignment and write a set of (static) hazard-free excitation and output equations.
 - b) Define the races and cycles in sequential circuits.

[12]

* * * * * *